![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() ![]() |
![]() |
![]()
Сообщение
#1
|
|
![]() Администратор ![]() ![]() ![]() ![]() ![]() Группа: Главные администраторы Сообщений: 14349 Регистрация: 12.10.2007 Из: Twilight Zone Пользователь №: 1 ![]() |
Сетевые технологии*, Реверс-инжиниринг*, Информационная безопасность*, Блог компании «Digital Security» ![]() В предыдущей статье был описан ход исследования безопасности прошивок промышленных коммутаторов. Мы показали, что обнаруженные архитектурные недостатки позволяют легко подделывать образы прошивок, обновлять ими свитчи и исполнять свой код на них (а в некоторых случаях — и на подключающихся к свитчам клиентах). В дополнение, мы описали возможности закрепления внедряемого кода на устройствах. Подчеркнули низкое качество кода прошивок и отсутствие механизмов защиты от эксплуатации бинарных уязвимостей. Мы обещали привести реальный пример сильной модели безопасности прошивок, где модификация исполнимого кода является очень нетривиальной задачей для потенциального злоумышленника. Встречайте – подсистема Intel Management Engine, самая загадочная составляющая архитектуры современных x86-платформ. Введение Для начала, основательно разберёмся в предметной области. Что это такое, откуда и зачем появилось? В 2005 году компания Intel представила Active Management Technology (AMT) версии 1.0 — решение для удалённого администрирования (управление, инвентаризация, обновление, диагностика, устранение неполадок и т.д.) и защиты десткопных компьютерных систем, своего рода аналог технологии Intelligent Platform Management Interface (IPMI), использующейся в серверах. ![]() [рисунок взят отсюда] Архитектура AMT 1.0 основывается на интегрированном в чипсет микроконтроллере (Management Engine), наделённому весьма впечатляющими возможностями, например:
А ещё этот микроконтроллер начинает работать при подаче питания на материнскую плату компьютерной системы (т.е. при подключении компьютера к электрической сети, ещё до того, как пользователь нажмёт кнопку Power). Итак, Management Engine всегда включён, но использование возможностей AMT требует активации (подразумевает задание пароля, сетевых параметров,… ) в BIOS setup, а точнее в MEBx setup: ![]() [скриншот взят отсюда] Похвально, что дефолтный пароль («admin») при первом входе обязательно требуется изменить на новый, удовлетворяющий определённым требованиям: минимум 8 символов, среди которых должны присутствовать хотя бы одна цифра, одна заглавная буква и один спец. символ. После настройки AMT-совместимой компьютерной системы, удалённому администратору становятся доступными сетевые функции (для их использования требуется ввод логина и пароля):
AMT 1.0 была реализована на интегрированном в южный мост чипсета (Input/Output Controller Hub, ICH) сетевом модуле Intel 82573E series Gigabit Ethernet Controller. Затем, в 2006 году, начиная с AMT версии 2.0, микроконтроллер перенесли в северный мост чипсета (Graphics and Memory Controller Hub, GMCH). Именно тогда подсистему наименовали в Intel Management Engine (ME) версии 2.0. ![]() [рисунок взят отсюда] Одновременно с этим появился бренд Intel vPro, который обозначал комплекс реализованных на основе Intel ME технологий: AMT, Trusted Execution Technology (TXT) и Virtualization Technology (VT). Позже в этот список вошли Identity Protection Technology (IPT) и Anti-Theft (AT). Тогда же Intel ME наделили ещё большим количеством впечатляющих возможностей, среди которых — полный доступ ко всему содержимому оперативной памяти компьютера через внутренний DMA-контроллер, а в дальнейшем появилась возможность мониторинга видеопотока, выводящегося на монитор (правда, только в случае использования встроенного графического ядра). Постепенно на эту подсистему стали навешивать всё больше различных системных функций (некоторыми раньше занимался BIOS) для обеспечения работоспособности компьютерной платформы:
и других технологий. AMT тоже не стояла на месте и активно развивалась: изменялся состав используемых протоколов (например, добавилась поддержка HTTPS через порт 16993), в версии 6.0 для удалённого администратора появилась фича Remote Desktop, она же KVM (Keyboard Video Mouse), и прочее. Подробнее про развитие Intel AMT можно почитать здесь. Тем не менее, из-за высокой стоимости реализации, эта подсистема присутствовала, за несколькими исключениями, только на материнских платах с чипсетами Intel линейки Q: GMCH ICH ME/AMT version Q965 ICH8 ME 2.x (AMT 2.x) GM965 / GME965 / GL960 / GLE960 / PM965 ICH8M ME 2.5.x (AMT 2.5.x) < — первое появление на ноутбуках Q35 ICH9 ME 3.x (AMT 3.x) GM45 / PM45 ICH9M ME 4.x (AMT 4.x) < — только на ноутбуках Q45 ICH10 ME 5.x (AMT 5.x) Тогда к чему вся эта специфика железа с шильдиком vPro, которое мало кто (в РФ) приобретал ввиду высокой стоимости (ну и других причин)? Дело в том, что, начиная с 2010 года, вместе с переносом части функциональных блоков северного моста (графическое ядро, контроллер памяти, ...) в корпус CPU, подсистему Intel ME стали встраивать во все чипсеты производства Intel. При этом ME-контроллер остался в корпусе чипсета – в Platform Controller Hub (PCH). Это чипсеты 5 серии и выше. Итак, хрология последующих версий для десктопов и лаптопов: PCH ME/AMT version 5 series chipset ME 6.x (AMT 6.x) 6 series chipset ME 7.x (AMT 7.x) 7 series chipset ME 8.x (AMT 8.x) 8 series chipset ME 9.x (AMT 9.x) 9 series chipset ME 9.5.x/10.x (AMT 9.5.x/10.x) 100 series chipset ME 11.x (AMT 11.x) Примечание: функциональность AMT по сей день остаётся доступной только на чипсетах линейки Q, т.е. только на оборудовании с шильдиком vPro. Думаете только десктопы и ноутбуки? Нет, Intel-а ответ! Та же участь постигла и серверные платформы от Intel: подсистема встроена в них, но под другим именем — Intel Service Platform Services (SPS). Произошло появление и в SoC (System-on-a-Chip) — под именем Intel Trusted Execution Engine (TXE). В итоге архитектура каждой современной мобильной/лаптопной/дескопной/серверной компьютерной платформы с чипсетом/SoC от Intel включает в себя самую скрытную (от пользователя системы) и привелегированную среду исполнения — подсистему Intel ME. Неудивительно, что разрабатывая эту архитектуру, компания Intel была вынуждена серьёзно поработать над её защитой от компрометации. Вздохнём и рассмотрим архитектуру этой подсистемы, чтобы разобраться в применённой модели безопасности. Вдруг это поможет успокоиться? Архитектура Intel ME Intel Management Engine (ME) – встроенная в компьютерные платформы подсистема, обеспечивающая аппаратно-программную поддержку различных технологий Intel. Как уже было сказано, первые версии этой подсистемы были основаны на двухкорпусных чипсетах Intel. Тогда в качестве базовой модели ME-контроллера использовался ARCtangent-A4 со стандартной системой команд ARC32. ![]() [рисунок взят из книги 1] В однокорпусных чипсетах уже использовались ARCtangent-A5/ARC600 с компактной системой команд ARCompact (ARC16/32). ![]() [рисунок взят из книги 1] В Intel SoC (там где эта подсистема называется Intel TXE) в качестве базовой модели для ME-контроллера используется SPARC. ARC-и, SPARC-и какие-то, да? Ревёрсить некомфортно будет! Ничего страшного, в Intel об этом позаботились: в самых последних платформах (Skylake, чипсеты 100 серии, Intel ME 11.x) ME-контроллер имеет архитектуру… x86! Да-да, в чипсетах теперь живёт ещё один x86. Впрочем, состав компонентов подсистемы Intel ME (с версии 2.0) не изменялся. Это:
В случае наличия шильдика Intel vPro, в состав подсистемы Intel ME дополнительно входит BIOS-модуль ME BIOS Extenstion (MEBx), предоставляющий графический интерфейс (показан выше), а также осуществляющий включение и конфигурирование AMT через MEI. Таким образом, у нас имеется среда исполнения ring -3 (так её условно называют) — 1 штука. Её привелегированность обуславливается способностями, которыми наделён ME-контроллер (о них написано выше), а скрытность — полным отсутствием возможности контроллировать программными (и даже аппаратными, в production-версиях плат) средствами. ![]() Архитектура ME-контроллера Внутри ME-контроллера, помимо микропроцессора ARC/SPARC/x86:
![]() [рисунок взят из книги 2] Самое время разобраться в том, как от модификаций защищён код, который управляет всем этим богатством. Прошивка Intel ME Intel ME firmware, в зависимости от наполнения, различают двух типов:
Тип прошивки определяет состав прикладных модулей, в которых реализованы определённые технологии (например, AMT, IPT и т.д.). Хотя есть и базовая часть, одинаковая для разных прошивок:
Общее описание содержимого Intel ME firmware можно найти в книге 2 из списка литературы, но детальнее со структурами (разобраны аналитическим путём) можно ознакомиться, например, в этом скрипте для распаковки прошивок Intel ME. Пойдём по порядку. В SPI флэш-памяти есть несколько регионов:
![]() [картинка взята отсюда] Теперь взглянем на сам регион ME, вот пример содержимого из его начала: ![]() Это Flash Partition Table (FPT) — таблица разделов ME firmware. В ней хранятся указатели на различного типа (код, данные, виртуальная область, ...) разделы и их параметры. Целостность этой таблицы контролируется одним байтом чексуммы по смещению 1Bh. Нас интересуют executable-разделы, т.е. те, что хранят исполнимый код. Их обычно несколько, рассмотрим один из них: ![]() В начале кодового раздела располагается манифест, который состоит из заголовка (со служебными данными и ЭЦП) и таблицы модулей. На приведённом дампе можно увидеть 2048-битный открытый RSA ключ (модуль по смещению 80h относительно начала раздела и экспонента по смещению 180h). Далее следует 256 байт сигнатуры. Своим закрытым ключом компания Intel подписывает часть заголовка манифеста и таблицу модулей (см. следующий дамп), прикладывая полученную подпись и открытый ключ для проверки. А вот и фрагмент таблицы модулей рассматриваемого раздела: ![]() Эта таблица содержит заголовки модулей, где указаны некоторые параметры и хеш-сумма SHA256 (по смещению 14h внутри заголовка). Сгенерировать собственную пару ключей RSA-2048 и подписать ими раздел не получится ввиду того, что целостность приложенного открытого ключа проверяется стартовым кодом в ME ROM, в котором хранится хеш-сумма SHA256 открытого ключа компании Intel. В итоге, схему верификации кодового раздела ME firmware можно обобщить на рисунке: ![]() Каждый кодовый раздел верифицируется по этой схеме. Этого более чем достаточно для защиты прошивки от подделывания. Программно перезаписать ME регион SPI флеш-памяти нельзя (помним про разрешения в Flash Descriptors), аппаратные средства, конечно позволят обойти это ограничение, но контроль подлинности не выключить. Напоследок, посмотрим в сторону защиты от бинарных уязвимостей. Мы увидели, что весь исполнимый код ME firmware разбит на модули разного назначения: ![]() [рисунок взят из книги 1] У ME-контроллера есть два режима работы: привелегированный и пользовательский (аналоги kernel mode и user mode для CPU). Привелегированный режим отличает, прежде всего, возможность доступа к аппаратным ресурсам и возможность обращения по адресам вне отведённого этому модулю диапазона памяти. Каждый модуль запускается и работает в заданном (в заголовке этого модуля) режиме. ![]() [рисунок взят из книги 1] Распарсив весь ME регион можно увидеть, что привелегированный режим используется ядром ОСРВ и некоторыми драверами. Службам и прикладными модулям, как и положено, отводится только пользовательский режим. Заключение Мы показали, что подсистема Intel ME является неотъемлемой частью архитектуры современных компьютерных платформ (на основе чипсетов/SoC Intel). Очевидно, что её компрометация предоставляет потенциальному злоумышленнику безграничные возможности контроля над платформой: доступ ко всему содержимому оперативной памяти (системная память, память гипервизора, SMRAM, ACRAM, выделяемая память для графического ядра — GFX UMA), out-of-band доступ к сетевому интерфейсу (мониторинг всего сетевого трафика), удалённый контроль как часть штатной функциональности AMT, перезапись любых регионов SPI флеш-памяти. Бонусом к этому является полное отсутствие возможностей обнаружения. Это является веской причиной для наличия у Intel ME серьёзной защиты. Мы считаем, что вендоры любого встраиваемого сетевого оборудования должны стремиться к описанной модели безопасности. Её характеризуют следующие принципы:
Заранее прокомментирую возможные призывы использовать компьютерные платформы на основе CPU и чипсетов от AMD: у них есть очень похожая технология, называется Platform Security Processor (PSP). Представлена не так давно, в 2013 году. Про неё пока известно не много, но кое-что можно почитать здесь. Список литературы 1. A. Kumar, «Active Platform Management Demystified: Unleashing the Power of Intel VPro Technology», 2009, Intel Press. 2. Xiaoyu Ruan, «Platform Embedded Security Technology Revealed: Safeguarding the Future of Computing with Intel Embedded Security and Management Engine», 2014, APress. Original source: habrahabr.ru (comments, light). Читать дальше -------------------- |
|
|
![]() ![]() |
Текстовая версия | Сейчас: 20.5.2025, 0:32 | |
|